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In a previous paper certain "corner transfer matrices" were defined. It was 
conjectured that for the zero-field, eight-vertex model these matrices have a 
very simple eigenvalue spectrum. In this paper these conjectures are verified 
for the case when the eight-vertex model reduces to two independent and 
identical square-lattice Ising models. The Onsager-Yang expression for the 
magnetization follows immediately. 
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1, I N T R O D U C T I O N  

In a previous paper, (1~ hereafter referred to as I, two "corne r  transfer mat-  
r ices" (CTMs) A and B were defined for the zero-field, eight-vertex model.  
It  was conjectured (in the limit o f  an infinite lattice) that  A and B commute,  
that  both  are exponentials o f  simple Heisenberg-like operators,  and that  
their diagonal forms are simple direct products.  

For  the case when the eight-vertex model  reduces to two independent and 
identical square-lattice Ising models, the matrices A and B can be handled by 
Kaufman ' s  (2~ spinor representation. This is done in this paper, and the 
conjectures are verified for this case. The Onsager -Yang  (a'~ expression for 
the magnetizat ion o f  the Ising model  follows immediately. 

In Sections 5 and 6 the temperature T is taken to be less than the critical 
v~Llue Te. The case T > Tc is briefly discussed in Section 7. 
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2. DEFINITION OF THE CTM 

Consider a typical face of the square lattice, as shown in Fig. I, with 
spins e~, %, e2., % (equal to + 1 or - 1 )  at its corners. The contribution of 
this face to the energy is 

e = - J e 2 c r 2 ,  - Y ' e l ~  a - J ~ 1 ~ 2 ~ 2 , ~  a (1) 

(using the spin formulation of the eight-vertex modeP'6)). Going downward 
and to the right, the operator V, that adds this face to the lattice is one with 
elements 

(V~)~i~2~31~io~ ~ = 3,1o i 3~3,~e-B~ (2) 

Define the Pauli operators acting on spin j to be 

s j=  (10 _01), e j=  (~ 10), d,=  ( :  ; i )  (3) 

Then after a little algebra one can verify that 

where 

V1 = -}[a + d + (a - d)slsa + (b + c)c2 + (c - b)s~c2s3] 

= r exp(Lc2 + L'sls3 + L"slc2Ss) (4) 

a = exp[fl(J + J '  + J4)] = r(exp L') cosh(L + L") 

b = exp[ f i ( - J  - J '  + J4)] = r exp ( - L ' )  sinh(L - L") 

c = exp[/3(-J  + J '  - J4)] = r(exp L') sinh(L + L") 

d = exp[/3(J - J '  - J4)] = r exp ( - L ' )  cosh(L - L") 

(5) 

These a, b, c, and d are the usual Boltzmann weights of the eight-vertex 
model. (~) 

Now consider the lattice of 24 squares shown in Fig. 2. Label the spins 
outward from the center as indicated. Then the operator that adds the upper 
right corner to the lattice (going clockwise) is 

A = VaV2VI" VaV2" Va (6) 

2 ;  _3 

i i  / " , , 4 1  
v v 

1 2 

Fig. I. Typical face of the square lattice, surrounded by sites 1, 
2, 2', 3. The broken lines represent the two-spin interactions 
between spins on a diagonal. 
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Fig. 2. The square lattice for the case n = 3, 
showing the division into four quadrants cor- 
responding to the corner transfer matrices A, 
B, C, and D. Also shown are the single-face 
operators V~, V2, and V3 that occur in Eq. (6) 
for A. 
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where V2 (V0) is defined similarly to V1, but acts on spins 2, 3, 4 (3, 4, 5). 
Thus in general 

Vj = -}[a + d + (a - d)sjs~+2 + (b + c)cj+l + (c - b)sjcj+lsj+2] (7) 

which is Eq. (18a) of  L 
The lattice of  Fig. 2 can be generalized in an obvious way to one with 

spins 1 ..... n + 1 on the right horizontal and upper vertical axes. I t  then has 
2n(n + 1) squares, and the upper right "corner  transfer mat r ix"  (CTM) is 

A = G1G2G3 "." G~ (8a) 

where 

Gs = ... v j  (8b) 

Similar CTMs B, C, and D can be defined for the upper left, bot tom left, 
and bot tom right quadrants of  the lattice. It  is easy to see that 

C = A, D = B (9) 

and that B is obtained from A by interchanging J and J ' .  The partition func- 
t ion is then 

Z = T r ( A B C D )  = Tr(AB) 2 (10) 

I t  is convenient to impose the boundary condition that the outermost 
spins all be positive, as indicated in Fig. 2, which is equivalent to setting 
s~+2 = 1 in Eqs. (7) and (8). The magnetization can then be defined as the 
average value of the center spin cq, i.e., 

M = T r [ S ( A B ) 2 ] / T r ( A B )  2 (11) 

where 

S = sl (12) 
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is the operator  which is + 1 for  crz = + 1, and - 1 for  ~z = - 1. Since spin 1 
enters Eqs. (7) and (8) only via sz, S commutes  with A and B. 

The operators S and A B  can therefore be simultaneously diagonalized, 
thereby simplifying (10) and (11). This is the object of  this series o f  papers. 

A r r o w  F o r m u l a t i o n .  I t  is convenient  to go f rom a spin to an arrow 
formulat ion,  by  replacing ~1 .... , o, + 1 by /z l  ..... /z, + 1, where 

/~j = crjgj+z, j = 1 ..... n + 1 (13) 

and again we take o,+2 = 1. The definitions (4), (7), and (12) are then 
replaced by 

Vj = �89 + d + (a  - d ) s j s j + l  + (b + c ) c j c j + l  + (b - c ) d j d j + l ]  

= - c e x p ( L c j c j + ~  + L ' s j sy+~ - L " d j d j + ~ ) ,  j = 1 .. . . .  n (14) 

S = s i s2  "" s , + l  (15) 

This is the arrow formulat ion (18b), (19b) of  I, with a minor  change of  
the boundary  condition. The spin formulat ion will not  be used again in this 
paper, so A is now to be regarded as defined by (8) and (14). 

3, K A U F M A N  R E P R E S E N T A T I O N  OF O P E R A T O R S  

The equations o f  Section 2 are valid for the general eight-vertex model. 
F r o m  now on we consider only the case 

J4 = 0 (16) 

when the model  reduces to two noninteracting Ising models on the two sub- 
lattices. F r o m  (5), it follows that  in this case 

ab  = cd,  t a n h L  = e -2BJ, L '  = ~ J ' ,  L "  = 0 (17) 

The great advantage o f  this case is well known f rom the work of  
Onsager (8~ and Kaufman(2~: The 2 "+1 by 2 "+ ~ matrices Vj, Gj, and A are 
members  o f  a group fr and any matrix in this group can be represented by a 
2n + 2 by 2n + 2 matrix (which is a vast simplification). 

To see this, define a set o f  ant icommuting operators F1 ..... P2~+2 by 

I l l  = S l ,  r 2  = Cz 

[ ' 2 j - ~  = d~d2 ... 6 _ i s j  (18) 

F2j  = d id2  ... d j _  ~ci,  j = 1 .. . . .  n + 1 
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One can then verify that  (for j = 1 .... , n) 

VjP~V71 = yP2j-1 - iSP2s+2 

= 7'P2j + i~'Fzs+l 

= - i 3 ' I ' 2 i  + Y'P2j+I 

= i3P2s-1 + 7P2s+2 

= P~ for  all other values of  1 

where 

if / = 2 j -  1 

if  l =  2j 

if  l = 2 j +  1 

if / = 2 j + 2  

(19) 

y = coth(2/3J), 3 = cosech(2/3J) 
(20) 

y'  = cosh(2j3J'), 8' = sinh(2/3J') 

Thus  each opera to r  Vj belongs to the set o f  opera tors  X such that  

2 n + 2  

XP~X -1 = ~ Xk,fl'k, l =  1 .... , 2 n + 2  (21) 
lc=J. 

where the x~,~ are scalar coefficients. 
Let  X 'be  the 2n + 2 by 2n + 2 matr ix  with elements x~,z. We call J? the  

representative of  X. Then it is easy to see that :  

(a) The opera tors  X fo rm a group  N. 
(b) I f  X, I1, Z are member s  of  fr such that  

x Y  : z (22a) 
then 

217 : 2 (22b) 

(c) I f  X, Y are members  of  fr such tha t  

2 = I 7 (23a) 

then 

X = )tY (23b) 

where A is a scalar factor.  This means tha t  a representative matr ix  
determines its paren t  opera to r  to within a scalar factor.  

Let  N be the 2n + 2 by 2n + 2 diagonal  matr ix  with elements 

~s,J = + l  if  j =  1 or  2 (modulo  4) 
(24) 

= - 1  if  y =  3 or  4 (modulo  4) 

Then f rom (3) and (18), 

Pj* = s T = G , j P s  (25) 
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Using these relations, together with the fact that Pl ..... F2,+2 anti- 
commute, one can verify the following properties of representative matrices: 

(d) Any representative 2 is an orthogonal matrix. 
(e) If X is real and symmetric, then 2 is Hermitian and 

2 *  = ~ 2 ~  (26) 

(f) If X is real and orthogonal, then 2 is real and 

2 = ~ 2 ~  (27) 

(g) If  X is diagonal, then 2 is block-diagonal in the form 

2 = 

'k o 
kl 

0 

0 

A2 

A n 

~n+l 

(28) 

/ all ~12 al3 

. 4 =  / a2~ a22 a2a 

\ a n + l , 1  

�9 . . al,n+ 1 

(29) 

where each a~j is a two by two matrix. .g can be evaluated by using (19) and 
(21) to write down 12j, then putting carets on the matrices in (8) and solving 
recursively for _~. 

For  given i and j,  one finds that a~j is independent of n, provided n is 
sufficiently large. It appears that in the infinite-lattice limit one is justified in 
treating ~4 as an infinite-dimensional matrix, with elements equal to the 
large-n limits of a~j. We shall do this from now on. 

The limiting values of the a~j can be calculated by introducing a generat- 
ing function 

d(x,y) = ~ ~ x~-~yJ-la~j (30) 
~=1 j=l 

where ho and h,+l are one by one matrices and hi ..... h~ are two by 
two orthogonal matrices. (This follows from the fact that 2 must 
commute with &, & ..... &+ 1 .) 

Since V1 ..... V, belong to the group ~, all our calculations can now be 
performed on representatives, instead of the original operators. It is con- 
venient to break the representative matrices up into two by two blocks; thus 
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where each a~j on the rhs is given its limiting, large-n value. After some algebra, 
one obtains 

where 

y) = A-1(  y -  ,'xy i(78'x + 
- i ( 8 ~ , ' x  + ys'y) ~,' - r x y  ] (31) 

A = 1 - ~3'(x 2 + y2) _ 277'xy + x2y 2 (32) 

Since A is symmetric, from property (e) we should have (for x and y real) 

~r y) = ~tt(y,  x) = d * ( - x ,  - y )  (33) 

and indeed these conditions are satisfied. 

4. D I A G O N A L I Z A T I O N  OF A 

Our aim is to diagonalize the product AB,  but as a first step we seek to 
diagonalize A, i.e., to find an operator P such that 

A P  = PAa (34) 

where Aa is diagonal. 
In fact, we shall find that the same operator P diagonalizes both A and 

B, and hence AB. 
Take representatives of (34), i.e., put carets on each matrix. From (28), 

Aa must be of the form 

) 11 0 

Aa = 12 (35) 

0 Aa 

where ho is a one by one orthogonal matrix and 11, 12, ;~3 .... are two by two 
orthogonal matrices. It is then natural to write 

Plo P11 P12 ""I 
p = /P2o  P21 p22 (36) 

\ P . ~ o  p31 p32 
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where the P~0 are two by one matrices and the other p~; are two by two. The 
representative equation of (34) can then be written 

~ ai~pkj = ptjAj (37) 
k = l  

w h e r e i =  1,2,3 .... and j = 0 , 1 , 2 , . . . .  
To handle this equation, we introduce a generating function for columnj  

of P: 

pj(x) = ~ x'-tp,j (38) 
i=J_ 

From (30) and (37) it then follows that, for x in some neighborhood of the 
origin, 

(1/2zri) fc d ( x ,  y -  1)pj(y)y-1 dy = p~(x)hj (39) 

where C is a simple closed contour in the y plane, surrounding the origin and 
such that pj(y) is analytic inside and on C, while d ( x ,  y-1) is analytic outside 
and on C. 

5. R E D U C T I O N  TO A D I F F E R E N C E  KERNEL 

Equation (39) is an integral equation for pj(x) and the eigenvalue matrix 
,~j. It is remarkable that it can be solved by a change of variables that reduces 
it to an integral equation with a difference kernel. Such transformations 
occur in all the exactly solvable nearest neighbor two-dimensional models 
(see, for example, p. 11 of Ref. 3, p. 169 of Ref. 9, p. 3120 of Ref. 10). They 
usually involve introducing elliptic functions. 

First note from (39), (30)-(32), and (20) that the kernel of the integral 
equation has a denominator proportional to 

If  we set 

A 1 = (cosh 2/3J) (cosh 2/3J') - 

1 ( + )  
+ ~ (sinh 2/3J') xy + (40) 

x/y  = e ~~ xy = - e  i~ (41) 

then A1 is an expression that occurs in the standard methods of solving the 
Ising model, for example, in Eq. (108) of Onsager. (8) 
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Now consider temperatures less than the critical temperature, and use in 
(20) the elliptic function parametrization of Onsager [Eqs. (2.1) and (2.2) of 
Ref. 8]: 

k = (sinh 2/3J sinh 2/3J') -1, 0 < k < 1 

am(ia) = 2i[3J', 0 < a < K'  
(42) 

~, = dn ia, 3 = - ik sn ia 

~/ = c n i a ,  3 '  = - i s n  i a  

Here k is the modulus of the elliptic functions and 2K and 2iK' are the 
periods. Hereafter the parameter a is that defined by (42), and is not to be 
confused with the Boltzmann weight a defined by (5). 

Change variables from x, y to u, v, where 

x = - i k  1/2 sn u, y = - i k  1/2 snv (43) 

and let 

p/(u)  = p j ( - i k  1/2 sn u) (44) 

Making these substitutions into (39), we find that the equation becomes 

(1/2~ri)( W(u, v)p/(v) dv = p/(u)hj (45) 
~ C  

1 

where C~ is the mapping of C into the v plane and 

W(u, v) = d ( x ,  y - l )  d(ln y)/dv (46) 

Using (42), (43), and (30)-(32), after some considerable algebra, one finds 
that 

W(u, v) = L-~(u)M(u,  v)L(v) (47) 

where 

L ( u ) = (  dnudn u -ik1'2 cn ; ) i k  1'2 cn (48) 

M(u,v)  = (4(v ~(v - u + ia) 4(v + u + 2 K -  ia)) (49) 
+ u + 2 K + i a )  ~ ( v -  u -  ia) 

and the function 4(u) is given by 

4(u) = (cn u + dn u)/(2 sn u) (50) 

Substituting the expression (46) for W(u, v) into (45) and defining 

f~(u) = L(u)p/(u)  (51) 

the integral equation becomes 

(1/2~ri) ( M(u, v)fj(v) dv = fj.(u)Aj. (52) 
1 
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From (49), the elements of the kernel M(u, v) are functions only of  either 
u - v or u + v. By negating u and v in the lower element(s) offj(u) andfj(v), 
we can ensure that the kernel is a function only of u - v, i.e., it is a difference 
kernel. 

We still need to prescribe the contour Ca. To do this, note that under the 
transformation (43), and for 0 < ~ < K',  the line element (i~ - 2K, i~ + 2K) 
in the v plane maps to a simple closed curve C surrounding the origin in the 
y plane. As v moves from left to right along this element, y moves clockwise 
once around C. 

Thus we can take Ca to be this line element, provided we negate the lhs 
of (52) and choose ~ so that C surrounds the singularities o f d ( x ,  y -  1). These 
singularities correspond to the poles of  M(u, v), and an appropriate choice of 

is one such that 

a + lira(u)[ < ~ < 2 K '  - a - IIm(u)[ (53) 

With this choice, and when v lies on C1, the imaginary part of the 
argument of each function ff in (49) lies in the interval (0, 2K'). Thus ~ there 
can be replaced by its Fourier series 

~ri f f  1 e,mzulzK (54) 
r = 2Km=~__o o 1 + q------~ 

where 

q = e -~K'/tc (55) 

is the nome of  the elliptic functions. The series (54) is convergent in the strip 
0 < I m ( u ) -  2K'. 

The integral equation (52) can now be solved by Fourier series. Re- 
membering that A0 is a one by one matrix and Aa, A2,... are orthogonal two by 
two matrices, we obtain 

and, for m = 1, 2, 3,..., 

go) (56a) ao = 1, fo (u)  = go 

[ cosh(rrma/2K) - i sinh(~ma/2K)] 
'~m = \ i  sinh(~rma/2K) cosh(~rma/2K) ] (56b) 

__ m i~mu/2K lgm gm 
f r a ( u ) =  e - ' z m u / z K ( ~ t h m  'gin ( - ihm hm) (56c) 

where llm(u)[ < K'  and go, gl ..... hx, h2,.., are constants, as yet arbitrary. 
The requirement that /5  be orthogonal implies that 

go 2 = ~/2I(, gmhm = ~rqm/2/[2K(1 + qm)], m = 1, 2 .... (57) 
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while, using (27), the requirement that/5 be the representative of an orthogo- 
nal operator implies that 

h~ = g m  (58) 

These conditions determine the gm and hm (to within choices of sign). 
From (56), each fro(u) is an entire function. From (48) and (51), pin'(u) is 

meromorphic, with possible simple poles when cn u dn u vanishes, i.e., at 

u = (2m + 1)K + inK'  (59) 

(m and n integers). From (56) and (58) the singularities at u = (2m + 1)K 
are removable, so each pin'(u) is analytic in the strip 

[Im(u) I < K' (60) 

One can also verify from (48), (51), and (56) that 

pm'(2K - u) = pin'(u) (61) 

From (44) it then follows that pro(X) is analytic in a plane with cuts along the 
imaginary axis from ik-1/2 to + i v  and from -ik-1/2 to - i v .  In particular, 
it is analytic for 

Ixl < k - ' ~  

and is analytic inside the contour C obtained by mapping the line segment C1 
back into the x plane. Thus we have obtained the required solutions of the 
original integral equation (39). 

6.  D I A G O N A L  F O R M  O F  T H E  C T M  

The representative of Aa is now given by (35) and (56). Comparing 
representatives and using the property (23), it follows that 

Aa = P - l A P  = p exp[(cra/4K)(sls2 + 2s2s~ + 3sas~ + 4s~s5 + ...)] (62) 

where p is an unknown scalar factor. 
One can verify that ~ commutes with/5, and hence S with P, and so, 

from (17), 

Sa = P -  1SP = S = sls2s3 "'" (63) 

The other CTM, namely B, is obtained from A by interchanging J and J ' .  
From (42), this leaves k unchanged but replaces a by 

a' = K '  - a (64) 
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However, from (56)-(58), the functions fro(u) are independent o fa .  From 
(51), (48), and (44), the same is true of each pro(X). Thus P and P are inde- 
pendent of a. 

It follows that the same operator P diagonalizes both A and B, that A 
and B commute (in the large-lattice limit), and 

Ba = P - 1 B P  = p' exp[(rra'/4K)(sls2 + 2s2sa + 3sas4 + 4s4s5 + "")] (65) 

where p' is another unknown scalar factor. 
From (62), it also follows that 

A = pe ~ar (66) 

where the operator ~r is defined by 

2g" = (zr/4K)P jsj + ~ P - ~ (67) 

and is independent of a. One can evaluate ~/t ~ directly by expanding A to first 
order in a. From (17), (20), and (42) 

2L = ka  + 0(a3), 2L' = a + (~(aa), L" = ~0 (68) 

Substituting these expressions into (16), (9), and (8), one obtains a result of 
the form (66), with 

oo 

J f  = he + �89 ~ ,  j (s js j+l  + kcjcj+l) (69) 
j = l  

e being the identity operator and ;~ some unknown scalar constant. Thus In A 
is an X Y  operator with coefficients proportional to j. 

One can obtain 15 from (67) and (69), the working being rather simpler 
than that required for diagonalizing A. The same result is of course obtained. 

Returning to Eqs. (62)-(65), these can be put into a simpler form by 
changing from the arrow representation to the third representation of paper I, 
i.e., by changing from arrow spins ~1, ~2 .... to "v-spins" v~, v2 ..... where 

vj = t~j/zj+ 1, j = 1, 2,... (70) 

In this representation Eqs. (62), (65), and (63) become 

Aa = p exp[(rra/4K)(sl + 2s2 + 3s3 + "-)] 

Ba = p' exp[(rra'/4K)(s~ + 2s2 + 3s3 +-..)] (71) 

S = $ 1 S A S 5 S 7  "'" 
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To within multiplicative scalar factors for Aa and Ba,  these equations 
can be written as 

~= (~ o)~ (~ w o) ~ (~ w o) ~ 

.~_ (1 wO)~ (; wOO ~ (o o)~... 
, (1 _0)~ ('0 ~)~ (0 0 ) ~  

where, using (55) and (64), 

(72) 

w = e -"c'12rc, w '  = e -'~'~'2K = ql~2/w (73) 

Thus the corner transfer matrices A and B may be simultaneously 
diagonatized and written in the simple direct product form (72). 

The spontaneous magnetization can now be trivially calculated by using 
the diagonal forms (72) in (11) (the unknown scalar factors in Aa  and Ba 
cancel out). Using (73), this gives 

M =  1 - q t  - q a l  _qS  
1 + q l  +q~l  +q5 (74) 

Using standard elliptic function identities, it follows that 

M = k '11~ = (1 - k2) 1/8 

= (1 - cosech ~ 2/3J cosech 2 2/3J') 118 (75) 

which is the well-known Onsager-Yang result. Ca,4) 

7. T H E  C A S E  T >  Tc 

The results of Sections 5 and 6 are valid only for k < 1, i.e., for tempera- 
tures less than the critical temperature To. If  k > 1, then from the last 
paragraph of Section 5, pro(x) has singularities inside the unit circle, which 
means that the column vectors of the infinite-dimensional orthogonal matrix 
/s cannot be normalized. The equations as written are therefore meaningless 
f o r T >  To. 

However, one can study the high-temperature case by using duality, 
i.e., by interchanging each sj and cj in (14) and (15). The only effect on the 
calculation of Aa and Ba is to interchange L and L ' .  Thus for T > Tc the 
CTMs still reduce to the diagonal form given by (72) and (73), but now k and 
a are defined by 

k = sinh 2[3J sinh 2f iJ ' ,  0 < k < 1 
(76) 

am(ia) = 2i f iJ*  = i In coth/3J, 0 < a < K'  
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With these definitions, Aa and Ba are given in the arrow representation 
by (62) and (65), but S is now given by 

S = cic2c3 "'" (77) 

From (11) it follows that M = 0 for T > T~, as expected. 

8. C O N C L U S I O N S  

In paper I it was conjectured for the general eight-vertex model that the 
corner transfer matrices A and B commute, that both are exponentials of 
Heisenberg-type operators, and that their diagonal forms are simple direct 
products. These conjectures have here been verified (subject to a rather cavalier 
treatment of infinite-dimensional matrices) for the special case when the 
eight-vertex model reduces to two independent and identical Ising models. 
This gives a new derivation of the spontaneous magnetization (but not of the 
free energy). 

It should be noted that the elliptic functions used in paper I have a 
different modulus k than those used in this paper (paper II). Adding sub- 
scripts I and II, respectively, to the parameters of the two papers, the 
correspondence is (for T < To) 

kn = 2kI~2/(1 + k~), K~ = (1 + k~)K~, K~ = �89 + k~)K~' 

~ = iK~'/4, qrz = x~ 2 = ql/~, ia~r = (1 + ki)(r/i + v~) (78) 

WII ~--- WI,  WIIt = WI', i a n k z i  = ~z 

Unfortunately, the operator P does not appear to have any simple 
structure. If  it could be simplified, then one might hope to be able to establish 
the expected generalization of these results for the eight-vertex model. 
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